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1. Introduction.

In the theory developed by Yukawa, the short range 
character of the nuclear forces is intimately connected 

with the existence of a new type of particle, the so-called 
meson, with a mass of about two hundred times the mass 
of the electron. According to this theory, the nuclear force 
should be due to a virtual emission and absorption of 
mesons by the heavy nuclear constituents which in the 
following will be called nucleons*. The further assumption 
of the possibility of processes in which mesons are simi
larly absorbed and emitted by the light particles (electrons, 
neutrinos) leads to a description of the ß-decay as a com
plex process in which a- meson, virtually created by the 
transition of a neutron into a proton, is immediately an
nihilated, emitting an electron and an antineutrino. Already 
in his first paper1}, Yukawa developed a theory on these 
lines; describing the meson field simply by a scalar wave
function, he found for the energy distribution of the ß-rays 
essentially the same formula as given by the original 
theory of Fermi2).

Since the scalar theory did not give the right type of 
nuclear forces, a new formalism, in which the meson field 
is described by a vector, has been developed by several

* As regards this notation, compare reference 22.
1
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authors3^ and the corresponding form of the theory of ß- 
decay has been given by Yukawa and collaborators4). They 
found that the most general form of this theory, in which 
the expression for the interaction energy between the meson 
field and the light particles does not contain derivatives 
of wave-functions of the light particles, leads again es
sentially to the formula of Fermi. A distribution of the 
type considered by Konopinski and Uhlenbeck5) could 
only be obtained by introducing an interaction explicitly 
involving derivatives of the neutrino wave-function. This 
distribution formula leads, of course, to a lifetime-energy 
relation for the ß-radioactive elements of the same type 
as the original Konopinski-Uhlenbeck theory, a result 
which is incompatible with the experiments on 8Li; these 
experiments seem, in fact, to be in accordance with a 
lifetime-energy relation of the type which follows from 
the Fermi formula6). As regards the energy distribution of 
the ß-rays, however, the measurements on the ß-spectra of 
different radioactive elements do not agree even for the 
so-called “allowed transitions” with the simple Fermi 
distribution, especially for the lower energies. Also the 
formula of Konopinski and Uhlenbeck is in obvious 
disagreement with recent more exact experiments.

Bethe, Hoyle and Peierls7) have tried to eliminate 
this difficulty in the Fermi theory by the assumption that 
the measured spectra are the result of a superposition of 
different elementary processes of the Fermi type. Their 
assumption is supported by the fact that the ß-decay in 
some cases has been found to be accompanied by a 
y-radiation. According to this point of view, the shape of 
the ß-spectrum should be connected with the frequency 
and intensity of the y-rays. A real test of the assumption 
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in the case of l3N, where the positron spectrum is experi
mentally well-known 8), is, however, impossible at the 
moment since the experimental data as regards the y- 
radiation obtained by different investigators9^ deviate es
sentially from each other, the existence of the y-radiation 
even being denied by one author101.

Apart from the discrepancies in the theory of ß-decay, 
the vector model of the meson field leads to another 
difficulty in connection with the forces between the heavy 
nuclear particles, since the resulting expression for the 
interaction potential also includes a term of dipole type 
which is too strongly singular for small distances. Møller 
and Rosenfeld111 have shown that it is possible to remedy 
this defect by introducing besides the vector wave-function 
a further pseudoscalar wave-function for the meson field. 
As indicated by these authors, the introduction of a pseudo
scalar wave-function leads also to a generalization of the 
ß-lheory. For the interaction between the mesons and the 
other particles we get then new expressions which contain, 
just as in the vector theory, derivatives of the wave
function of the mesons. If a suitable canonical transform
ation1^ which separates out the static interaction between 
the nucleons is performed, the transformed Hamiltonian 
will contain a direct interaction between the nucleons and 
the light particles, described by an expression which, in 
general, also contains derivatives of the wave-functions of 
the light particles. Since the interaction between the nucleons 
and the light particles is responsible for the ß-disintegration 
processes, we find for the energy distribution of the ß-rays 
a formula which may deviate from the Fermi formula 
and, in some cases, is identical with the formula which 
was found by Fierz131 in a Fermi theory starting from 
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the most general interaction between the nucleons and the 
light particles.

It should be mentioned that Yukawa’s theory of ß-decay 
further supplies a connection between the lifetime of free 
mesons in the cosmic radiation and the lifetimes of ß-radio- 
active elements. Taking for the universal ß-decay constant 
of the Fermi theory the value given by Fermi2), Yukawa 
found qualitative agreement between the lifetime of the 
mesons in cosmic radiation determined by Euler14) and 
the lifetimes of the heavy ß-radioactive elements. This 
agreement was only obtained with that expression for the 
energy of interaction between the mesons and the light 
particles which does not contain derivatives of the neutrino 
wave-function. In the case where such derivatives are 
introduced into the energy expression, the value for the 
lifetime of mesons turns out to be about ten thousand 
times too small, since it contains an extra factor of the 
order of the square of the ratio between the masses of the 
electron and the meson. It is known, however, that the 
value for the universal ß-decay constant, as given by Fermi, 
is too small to account for the lifetimes of light elements, 
especially of ' He. This means, as pointed out by Nord
heim1^, that the theory of Yukawa would not give the right 
relation between the lifetimes of the light radioactive ele
ments and the lifetime of the cosmic ray mesons. It can 
be shown161 that this difficulty is unavoidable in any theory 
containing only one type of meson field and can, in principle, 
be removed by the introduction of a mixture of two types 
of meson fields. It should be noticed that recently Fermi171 
has drawn attention to the fact that the difference between 
the absorption of cosmic ray mesons in air and in con
densed materials is due not only to the instability of the 
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mesons but also to a polarization of the material. In the 
evaluation of the lifetime of cosmic ray mesons, the above 
effect must therefore be taken into account.

2. Survey of the theory.
Before proceeding to the main problem, we shall first 

give a survey of the generalized theory of the meson field 
including the pseudoscalar wave-function referred to above.

For the description of the neutral and the positively 
and negatively charged mesons it is convenient to intro
duce three (real) fields, the first two of which are con
nected with the charged mesons while the third represents 
the neutral mesons18). Each of the three types of field will 
he characterized by two vectors F and U and two further 
functions O and T, the latter having the invariance pro
perty of a pseudoscalar. The field quantities belonging to 
the three different kinds of field will be distinguished by 
a heavy printed index, i. e. (F3, U3, <D3, T3) represent the 

neutral meson field while (Ft, Ut, <t>(, Tl) and (Fa, i/a, 
<DÄ, Ta) together describe the field of the charged mesons. 
Il is convenient to group three corresponding quantities 
into a symbolic vector, viz.

^=œ1,

u= (uit ¿4,
<l> = (Oj, <Da, <D3)

T = T3)

—>

(1)

The field quantities JF and U as well as <l> and 4-' are 
canonically conjugate, satisfying the usual commutation 
relations, i. e.
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[ü£(x,f), Fv(x',o] = y8(x-x')S^5Ai 

I <t>A (x, 0, T (x', /) ] = "5 8 (x - x') 8w

while all other pairs of field quantities commute.
We shall now write down the Hamiltonian for a system 

of heavy particles (protons, neutrons), light particles (elec
trons, neutrinos), and the meson field including the most 
general interaction between particles and field.

All quantities referring to the light particles will through
out be denoted by the same letters as the corresponding 
quantities referring to the heavy particles but with the 
symbol "" placed above. For instance, the “isotopic” spin 
of the nucleons is denoted by the letter t = (t(, tä, t3), 
where t3 = + 1 characterizes the neutron state and t3 = 
— 1 the proton state of the heavy particle. Accordingly, 
we shall use the notation f = (t,, tä, f3) for the “isotopic” 
spin of the light particle, where t3 = .+ 1 means the elec
tron state and t3 =—1 the neutrino state of the light particle. 
Similarly, p, o and p, ó are the usual Dirac spin vari
ables for the nucleons and the light particles, respectively.

For later reference, we shall now list the quantities which 
appear in the Hamiltonian and refer to the light particles:

= (fl <p* t <p 

JJ — gt vp* T pt à kp 

t = — ^^Tpa’dkp

S = p3ày
K

/* = kp* T O kp
K

f? =
K = Â<p*Tp2vp.

(3)
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Here y denotes the wave-function of the light particle; 
the g's and f's are universal constants which have the 
dimensions of electric charge and determine the strength 
of interaction between light particles and the meson field, 
K is the reciprocal of the range of the nuclear forces and 
is connected with the mass Mm of the meson by the relation

Analogous quantities referring to the nucleons will appear 
in the Hamiltonian. It should be noticed that the quanti
ties Jf, T, O and It are proportional to the ratio of the
velocity of the nucleons to the velocity of light and are, 
therefore, small compared with the quantities JV, S, J*.
We have:

(5)

In these expressions, we represent the nucleons in the 
configuration space, all quantities belonging to the i-th 
particle being denoted by the index The constants glt 
.72’ /i* Æ» which have the dimensions of electric charge, 
determine the magnitude of the nuclear forces.
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As already mentioned, the vector model leads to a 
singular term in the static interaction energy between the 
nucleons; a similar term, with opposite sign, arises from 
the pseudoscalar part of the field. These two terms cancel 
each other if one puts

I /2 I = I <72 (6)

The expression for the Hamiltonian can then be writ
ten as a sum

©^= <^+©^ + ¿^+H1 + H2 (7)

where ©^ and ©^ are the kinetic energies of the nucleons 
and the light particles, respectively, and ©^Ç is the energy of 
the meson field, while the interaction energy consists of 
two parts: Ht containing the constants .r/t, <72, fi’ onIy> and 
giving rise to the forces between the nuclear constituents, 
and H2 which also contains the constants f2, gt, g2 and 
is responsible for the ß-disintegration. If MN, Mp and /n 
are the masses of the neutron, the proton and the electron, 
respectively, and if the mass of the neutrino is pul equal 
to zero, the first four parts of the Hamiltonian are given 
by the following formulae:

©7A' = H \F~ + K-2 (div JO2 + (rot ¿7)2 + K2 r2} dV 
' 2 J

(8)

+ o 'i (<l>2+(grad4»)2 + K2V2}i/V
2 r
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Ht = j¡ ^-^^-iVdiv  ̂+ Q^ + árotLF^í/V

\ J®grad4>dV+ J \ O2dV.
(9)

The scalar products involving the symbolic isotopic 
vectors are analogous to products of ordinary vectors, e. g.

The expression for //2 is not uniquely determined by 
the requirement of relativistic invariance of the whole 
scheme. It is, of course, always possible to add to the 
Lagrangeian function invariant expressions as

n (TT-SS)

P' k-2(jt jt—2V2V)

T]" (oo - /*/*)

n"'K--2 kb

(io)

where r|, r|z, ri" and r\"' are arbitrary constants. The same 
terms would also appear in the Hamiltonian and we have 
then for the most general form of H.> the expression
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(H)

-*TV2 + 2V(-divJP+2V) +

The last integrals represent a direct coupling between 
heavy and light particles of the same type as the coupling 
in the original Fermi theory. In a theory like that pro
posed by Yukawa, where the ß-process should be con
nected with the instability of mesons, one would not expect 
such direct coupling to appear in the Hamiltonian. It is 
seen, however, from (11), that it is impossible to choose 
the r)’s in such a way that all terms of direct coupling 

disappear. It is true that the terms TV TV, SS and 1*1* 
vanish if we choose T| = r|' — T|" = 1, but instead we get 

terms containing 1111, 7’ T and O O, which are again 
of the same type. We have, therefore, Io retain the general 
expression without ascribing beforehand definite values to 
the r]’s. For the same reason, it is not allowed to neglect

—> —> > >
the terms containing 1111, TT, O Ö and RR although 
they are of a smaller order of magnitude than the terms 

TV TV, SS and 1*1*

+ iy"\(QQ-í* ?) + n"zK“2 j¡ R RdV.

\ (JPgrad 4» + <I> O + 4» R —1*1*) dV

+ r| Ç(TT-â^)</V+ti'k-2 icwif-TVTV) dV

3. Derivation of the formula for the ß-decay.
Since the terms and H2 contain an interaction be

tween the meson field and the nucleons or the light part
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I

icles, the ß-emission is, in this form of the theory, partly 
a second-order effect involving a meson in the intermediate 
state. It is possible, however, to perform a contact trans
formation1^ leading to an expression for the Hamiltonian 
in which the static interaction between the nucleons appears 
explicitly. This new form of the Hamiltonian contains, 
furthermore, a term of direct interaction between the nucleons 
and the light particles, from which the ß-process can be 
obtained as a first-order effect in a perturbation calculation.

The unitary operator oF, which determines the contact 
transformation (defining any new variable A' in terms of 
the old variables A by the formula A' = A of), has 
the form

with *

* The symbol A between two vectors denotes their vector product.

(12)

= ^iZt(1)^(1) tZ'dV+^ZT(,)^('^[(F,,AÍ’)+7,)<b]dV (13) 
(i) •’ K (i) J

where

(U)

Since the old variables do not appear again in the 
following, we shall from now on omit the prime in the 
symbols for the new variables.

Apart from the static interaction in the Hamiltonian 
expressed as a function of the transformed variables we 
shall now only retain such interaction terms which are of 
importance for the ß-disintegration, and we find in this 
way the expression
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H,

<^-= <^ + <^+Hstat + Hß (15)

where and ©^Ç are given by (8), and*

•*(0 ->(*)
X —X

(16)

(0

(17)

K J

V f C (í) 7TZ .92 C ^»7 
~2. 7i \T Tf dV——\T JI (

(i) I •' K •’

(Jo ( <‘) "ö /^‘l 1 \ JTr— — \t S (a grad)f dV K •)

As the ß-disintegration consists of a transformation of 
a neutron into a proton with a simultaneous emission of an 
electron and an antineutrino, we now ask for the probability

* We have, already at this point, put = 1 in HSfat. 
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of a process in which a neutrino in a negative energy 
state disappears and an electron is created in a positive 
energy state while a neutron in the nucleus changes into 
a proton.

If the initial and final states of the nucleus are denoted 
hy the letters n0 and n, and the states of the electron and 
neutrino involved are described by the eigenfunctions <ps 
and «Po-, the probability per unit lime for such a process 
to happen is equal to

T 5 (£- -E- + 1 (n’s I «ß I lo. a) Ia (18)

where En<>, En, Ea (< ()) and Es are the energies of the cor
responding states.

Using (6), it is easily seen by partial integration that 
the matrix elements of the four last integrals in (17) are 
small compared with the matrix elements of the three first 
integrals* since they will contain an extra factor of the 
order of the ratio between the momentum of the electron
(or the neutrino) and k/i, which again for ordinary ß-pro-

cesses does not exceed the order of magnitude ,,-ælO-2. 
M m

Retaining the other integrals in (17), using the definitions
(3), and putting in the integrals approximately

* The partial integration of the last integral in (17) yields, furthermore, 
a double integral extended over a small surface around the point x^\ 
The value of this integral is

(Ü>(0
CT (19)

where the constant p depends on the shape of the surface chosen 
/ 4ir „ \
I e. g. p = — for a sphere I. Terms of this type occur already in the 

expression (17) and the appearance of (19) can be accounted for by 
changing the coefficient (1—r\") into (1—T|"— p) so that the general 
character of the final result will not be affected by this change.
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4 TT rt

we get for (18)

(20)

2tt
h (21)

where

grad <[/ p2 <pa

„ (0^(0 * _ ■* „ (0^(0 * w ±
+ n .92 <72 P2 CT <PS P2 CT <Pa — TI 92 92 p3 9S P3 <PCT

, „ (0^(0 * _ ± „ *
+ TI <71.91 P1 O’ ?s Pl <7 <Pa — n 91 gi <PS <Pa

and

is an operator transforming the i’th nucleon from the neu
tron state into the proton state. In formula (22), the func
tions <p* and (pCT are taken on the z’th nucleon’s place. We 
shall now introduce the following abbrevations:

+ i) , (N)• • • dx

(Í+D , (N)
• • • dx

N «
A =ZVn*0' 

1=1*'

-> N c
B = 2 \ Y* ()'

i = L»> n N-

c=> P.Œ y„, 
I = 1 •’

, (N)
••■ax

< 
dx

>•-1) (i + i) 
dx

“0
(i—1) . (i 

dx dx

(0 (0^(0 , (i)
(23)

(22)
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(N)

(23)
(N)ii) (0^(0 ... , (0 , (i—1) , (i + 1) , (

Q p2 ° Yn0 dx dx dx • • • dx

(i) (0^(0 , (i—1) , (i + 1)
0 p3 CT T dx nQ • • • dx dx • • • dx

h) (f)t„ , ( i—l) , (i + 1) , (N)
0 Pi^l0 dx • • • dx dx • • • dx

_(0 (i),„ , <:¡—i) (i + D , (N)
0 P2^„. dx - • ‘ dx dx • • • dx

where denotes the wave-function of the nucleons and N 
is the number of nucleons in the nucleus. The operators 
p^ and pg) are proportional to the ratio between the velo

city of the /’th nucleon and the velocity of light. This means 
that C, I), F and G are small compared with B and A, 
respectively, while E — B, the operator p^ differing from unity 

only by terms of second order in —. This fact will be of im

portance for the final discussion of the distribution formula.
With the above notations we get*

(n I 7/pCT 17l0) =

*2 í c C
= k2 ¡í1—J^(æ)<Ps(æ)?a(«'r)c?æ+Tl/.9,iSfi J C(æ)<P*(æ)Pi0’<PCTCT)^

Í • -> -> I* -> ->
+ (1 — n) <72 f/2 J (æ) <P* (æ) P3 ÎCT (æ) dx + n <72 02 ) <p* (æ) P2 á ÎCT (*) dx 

+ n" fz fi J ?(*) <P* (æ) Pl <Pct (æ) dx + (1 — Tl") A fz jj B (æ) <P* (æ) à <Pa (æ)dx 

+ fl fl J G (*) <P* (æ) p2 <Pct (*)

~ -2k~- ji # (æ) [grad 9* (x) • p2 <pCT (x) + 9* (x) p2 • grad 9CT (x)] dx j.

* In the following, x and x' denote all the spacial coordinates of 
the respective points.

1). Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVIII, 7.

(24)

2
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We have now to insert the expressions for the wave
functions of the light particles. The neutrino can be repre
sented by a plane wave of the form

(25)

For <ps we have to insert the wave-function of an elec
tron in a field which outside the nucleus is a Coulomb 
field and inside the nucleus has a form suitably chosen 
to represent a mean value of the electric potential of the 
protons. Just as in the theory of Fermi, we may then 
assume that the radial part of the wave-function <ps. and its 
first derivatives do not vary appreciably inside a region of the 
extension of the nucleus. We can, thus, in (24) replace the 
radial part of the function <ps. by a constant equal to its 
value on the boundary of the nucleus. This value again 
does not differ very much from the corresponding value of 
the solution in a pure Coulomb field.

An examination of the exact wave-function of a Dirac 
electron in a Coulomb field shows then that, while we for 
light elements may replace the exact wave-function by 
that of a free electron, such a procedure is not allowed 
for the derivatives. Since the expression (24) also contains 
derivatives of the wave-function <ps we are obliged, even 
for light elements, to use the exact solutions of the Dirac 
equation for an electron moving in a Coulomb field.

To get the probability of emission of an electron with 
an energy between E and E-\-dE, we have to sum (21) 
over all neutrino states cr and all those electron states for 
which the energy lies in the interval (E, E+dE). In order 
to sum over all neutrino states, we have first of all to take 
the sum over the two different spin states (belonging to 
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the same momentum and energy) of the neutrino. This 
summation is easily performed by using the method of 
CasimirI9). Second, we integrate over all directions of the 
momentum of the neutrino and, finally, over all energies 
of the neutrino. Due to the 5-function in (21), the result 
of the last integration is that we have simply to put

-£a = E„,-E„-Es = W-E, (26)

where W is the energy supplied by the nucleus in the 
ß-process.

We insert the wave-function (25) into (24) and take 
into account that the wave-length of the neutrino is large 
compared with the nuclear radius, so that the exponential 
factor can be put equal to 1 inside the nucleus. We get thus

(n I iff I n0) =
2 ( i* i‘ -> ->

= ~2 10 ~ 'n') 9191 ) ¿ (æ) <P* (æ) dx + T) ' gt (jt J C (x) q>* (x) pL ct dx

+ G — Tl) .72 92 J E (x) <p* (x) p3 q dx + T] g2 g2 J D (x) <p* (x) p2 à dx 

+ n" Í2 ¡2 j F(x) (p* (x) pt dx + (1 — r]") /2 /2 \ B (x) q>* (x) á dx 

+ fi"' A A \ G (x) <p* (x) Pa dx
V

~ v ß (æ) grad P2 dXK t'

- ~ Pa J # (*) <P* (æ) P2 «a = ^«a-

The first of the integrals in this formula is of just the 
same type as the matrix element appearing in the theory 
of Fermi.

2*

(27)
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The neutrino wave-function is normalized in the usual 
way inside a large cube of the volume V by putting

with

(28)

(29)

Using the above expression for (n | H'^ | n0) we find for 

(21) a formula which contains products of an integral 
appearing in (27) with the complex conjugate of the same 
or another of these integrals, e. g.

A (x) <p* (x) dx • \ (ps. (x) A* (x) dx =

j¡ ¡i A &') <?S (x') <ps (x) A* (x) dx' dx
(30)

\ C (x) <p* (x) Pi ct dx • \ CT p2 <ps (x) J)* (x) dx =

= i \ \ C (xz) 9* (xz) p3 9S (x) D* (x) dx' dx

+ j [C (xz) 9* (xz) A Ct pj 9S (x) D* (x) dx' dx.

(31)

The quantity obtained has now to be summed over all 
neutrino states belonging to the energy Ea. According to 
the method of Casimir 19), which makes use of the relation 
(29), this sum is equal to

¿’.sÆj+Hjy

where denotes the energy operator for the neutrino, 
and the sum is extended over all directions of the neu- 
trino momentum pCT. The performance of this rather
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troublesome calculation leads to an expression U containing 
terms like

The probability of emission of an electron with energy 
between Es and + dEs is then, remembering (26), given by

P(Es)dEs = U, (33)

the summation being extended over all states of the elec
tron belonging to the same energy Es. In order to evaluate 
this sum, it will be necessary to find sums of the type

A ?Xæ')°n,a<PS(æ) <34)
s

with
Ou,v = á'pw = O’1; w = 0,1,2, 3; p0 = 1).

As already mentioned, we have to use the exact solution 
of the Dirac equation for the electron and to put the 
radial part equal to its value on the boundary of the 
nucleus. We shall use the solution in the form given by 
Rose20), who denotes the radial part of the first and last 
two components of the four-component wave-function by 
fK and gK, respectively. The quantity k is intimately con- 
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nected with the total angular momentum quantum number 
j and it can take on all values except 0. The angular part 
of the wave-function depends upon k and, furthermore, 
upon a magnetic quantum number mK, which can take on 
half-integral values depending on k. We can thus write 
the sum (34) as

00 00

\ y t q>K,mK(æ/)0„.l,<pK,mK(æ) = (35)

|k| = 1 mK |k| = 1
K<0 K<0

Here, <pK,,nK denotes the four-component wave-function of 
the electron, and the inner sum is extended to all values 
of mK which belong to a given k.

It is found that the quantities Xll v can be expressed 
by help of the radial parts fK and gK of the wave-functions 
and the unit radial vector

X X

For example, we get for k = — 1 the following expressions

40° = 2 [n (x)-n (x')J/_//) f_^r) + 2ø_1(r')ø_1(r)

Ao,i u
x(~ l)= 0*0,2 w

= 2 (®) 'n <æ')] f-1 0*') f-1 (r) — 2 S'-1 O') 9-1 0)

A/(1)Ol) = 2 i [n (æ) A n (x')J (/•') f_t (r)

X, i ° = 2in <x) 9—1 O') f-1 0) — 2 z z? (x) f_ ! (/•') g_ t (r) 

A'* j2l) = — 2 77 (x) <7_1 (r') f_i(r) — 2 77 (x) f-^r') g_t (r) 

Xi,3° = 2 * [n (æ) A n (*')] f-t O') /—1 0)-
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Also the terms in U which contain derivatives of the 
electron wave-function can easily be calculated. As it will 
be seen, the terms of the sum (35) with | k| > 2 can be 
neglected in the evaluation of U, so that it will only be 
necessary to find besides the expressions (36) the corre
sponding quantities with k = + 1, —2 and +2.

As already mentioned, we may put the functions fK (r) 
and gK(r) equal to their values at the boundary of the 
nucleus, i. e. to their values, when r is given by

(37)

The functions fK and gK are given20* by the formulae

i/xl
W |/tt T(2y+ 1)

,_______ cc¿Es rfy+^'l
\ Ps 1

(38)

(39)

2 y + 1 ; 2 ipsr =F c. c.

where c. c. denotes the complex conjugate, F— the con
fluent hypergeometric function, and

y = J/k2 — a2Z2,

all quantities being expressed in atomic units.
For light elements and for the whole ß-spectrum except 

the very lowest part of it, we can assume that

ZccE
Za«l and ------- « 1.

Ps
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Expanding the expressions (38) into series in r, putting 
ZaEs

Zct —----- — = 0 and neglecting terms of higher order in
P s

r, we find that for negative k the function fK is small of 
the first order in r compared with gK, while for positive k it 
is the function gK which is small compared with fK. Fur
thermore, it is seen that the order of magnitude in r de
creases with increasing |k|. We have

9 k rf*

,9k +1

fK + i

k > 0. (40)

These relations show that the sum (35) can, in general, 
be restricted to the terms with k = T 1, since the terms 
with higher |k| will be much smaller. Only in the quan- 

v ^(K) -y(K)
tities like x. Xt 0 and Äj 3, where the first term with 

K K
|k| = 1 is expressed by the “small” radial functions only, 
it is necessary to add one second term with | k | = 2 which 
may happen to be of the same order of magnitude. The 
calculations show, in fact, that

X,o ) = 6 7 [n (æ) • n (æ')J [n O) A n (æ')j /-2 f-2 W ~

— 2i[n (x) A n (x) | <7_2 (rz) </_2 (r)

X,3 } = 6 7 (æ) • n («')] [n (æ) A 71 (*')J A-2 (f/) f-2 (r) + 

+ 2i[n (x) A n (x) J g_2 (r') g_2 (r),

the first part of these quantities being negligible and the 
• • 0second being of the same order of magnitude as A. „ and 

->(— 1) .
A\ 3 , respectively.
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Also in all those terms in U which contain derivatives 
of the electron wave-function and, consequently, the deriva- 

dfK d(fK
lives — and ----, the radial functions corresponding to 

IKI = 2 cannot be neglected. These derivatives satisfy the 
differential equations

£/k 
dr

(I9k 
dr

í7k-(!

9k(®,+l+ -(1 + k)
(41)

It is easily seen that the order of magnitude of these 
derivatives decreases with increasing |k|, with the only 
exception of the step from |k| = 1 to |k| = 2, since the 
coefficients (1—k) and (1 + k) just vanish for k = + 1 and 
K = —1, respectively.

All necessary quantities Azu „ being calculated, we insert 
them into the formula for U and put the different radial 
functions equal to their values at the boundary of the 
nucleus. These constant values can be taken out of the 
integrals (32). Under the integral sign, there will remain 
two ol the functions A, B, •••, G, and some combinations 
of the vectors n (x) and n (x).

In the course of the calculation, we have to introduce 
no less than 28 different types of such integrals, each of 
them being a functional depending on two of the functions 
A, B, •••, G, but the summation makes most of them 
disappear from the formulae. The remaining integrals are 
the following:

O1(IT, V) = W(x') V*(x)dx'dx

æ2 ( V, Z) = Y (x') Z* (x) dx dx f(42)
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oo3 (IV, Y) = JJ IV(x') [n (æ) — n (x')J Y* (x) dx' dx 

oo4 (W, Y) = J J IV (x') n (x) Y*(x) dx1 dx

co5 ( Y, Z) = J J Y(x') A ! n (x) — n (x') ] Z* (x) dx' dx

coG ( Y, Z) = J J [y (æ) n (æ) n (æ) z* (*)] dx' dx

co7 ( Y, Z) = J J Y (x') n (x) A n (rc')J [n (x) Z* (x)\ dx' dx

co8 ( Y, Z) = J J [ Y (æ') n (æ') J I n (x') » (æ).i [” (x) z* (æ) J dx' dx

oo9 ( IV, Y) = J J W (x') ! » (x') 11 (x)1 ¡n (æ) ^(æ)] dx dx>

where IV and V denote the scalar functions A, F, G, while 
Y and Z stand for the vectorial functions B, C, I), E.

In the final formula, terms appearing with the same 
constants can be compared as regards the order of mag
nitude. In order to eliminate those expressions which are 
small, we notice that

me
k/j

m 00 10 2 (43)

and that for the light nuclei considered here

r
nucl 

ft/me
oo a Z1, œ 10 (44)

while E and ps are of the order of magnitude 1. Further
more, the functions F and G are small of the order of 
magnitude -cv>10~1 (see p. 17) compared with A, and so

-> -> ->
are C and I) compared with B, while, as already mentioned,



On the Theory of ß-Decay. 27

2
apart from terms of the order

2
(45)

and
(46)

element appearing

differ from
\ A (a?) dx

2jj Bz (x) dx

do not exceed the order of magnitude 1, i. e.

The quantity (46) which also appears in the vector 
theory given by Yukawa is of the type introduced already 
before by Gamow and Teller21) in order to account for 
the experimental selection rules. Since

jj Bx,(x) dx, jj By (x) dx, jj Bz (x) dx

-> ->
E = B

The quantity (45) is just the matrix
in the Fermi theory and its absolute value cannot exceed 
the order of magnitude 1 :

COt(A, A)< I CO! (A, A)]maxc'° 1.

co2 (77, 77) < [co2 (7?, B)] max ~ 3.

only by the appearance of the spin components <jx, cr,, 
respectively, whose squares are equal to 1, the quantities

\ By (x) dx ,

Two of the matrix elements which appear in the dis
tribution formula are known from earlier theories, viz.
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We shall coniine ourselves to the consideration of the 
so-called allowed transitions, which means that the quan
tities (45) and (46) do not vanish but nearly attain their 
maximal values. In some cases, which will be discussed 
later, the same assumption has to be made as regards the 
matrix elements

æ2 (C, C), co2(Z), D), cûj (F, F), co1 (G, G), (47)
too.

The summation over all electron states being performed, 
we get with the significations indicated above the following 
expression for P(Es')dEs, where Es, W, ps, pa and r are 

expressed in atomic units me2, me and —, respectively, 

and the value
ft = 1

is inserted:

P(E,)dEs = (48)

= ? ® ('"f)1 (w" dE- x 

xjl®1!'"*"*«5’6) (0

+ h"2<ft (ft ft) + (1 -n")2<02 (ii, b)] (II)

+ h'2 “2 (c. O + (i -n')2 «L (a, a)] (in)

+ k «2 C>. B) + (i - n)2 «2 (ft E)1 (IV)

(frc)2 \K 71/
1
r

, -M(Za)2 (VI)
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- {f'^ in" n'" ta (E G) - «Î W G)]

+ (>-’!> <! - n") [“2 (B. B) + “2 (B, E)]
(nc)

(VII)

(VIII)

+ inn' ta (C, D) - <o* (c, /J)]

® g) <*-<> [“=(«■ 7+ 7 ")1 z“|
, 1 ''aB? hSifiSh 
+ 9 E, (he? X h

4 Pa flfih
(He)2

+ 3 Pa
ft 92 h 9z

(He)2

(1-n") co2(/?, B)

(IX)

(X)

(XI)

(XII)

(XIII)

(XIV)co2 (B, B)

(XV)

k h

(XVII)

inc (XVIII)co6

(XIX)

(1 -Î1) [^(B,E) + ^l(B,E)]

3

nucida (XVI)

inc
kA,

inc
K h

me
k ft

(he)* 2

n'(i-n") ta(B,C) + co*(B,C)]r d 
(Ac)2

+ 1 6Afi M n'" [«3 (G, B) + co; (G, B)1 rnJ
2 (he)- \kA/ I

I fl 92 A 92 
+ (Ac)2

, fifí _ 
(he)2 \xh

+ 3 n'"(l-n)ta(G,7í) + <o:(G,E)]rn.lcl

(XX)

(XXI)
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(XXII)
(/¡c)2

ññ (XXIII)ZaPct (fie)2

(XXIV)

Za

(XXVI)

1
3

, 1 2
4-gPCT

Pl

Es

T|'" [co3 (G, ß) + co* (G, B)J rnucl (XXV) 

The distribution formula is supposed to hold for the 
emission of electrons. To get the corresponding formula 
for the emission of positrons, the quantities Es and in 
the preceding calculations have to be replaced by —Es 
and —Eo, respectively. This means, according to (26), 
that the final distribution formula follows from (48) in 
changing IV into —IV and Es into —/?s.

4. Discussion of the disintegration formula.
The first six terms of the expression (48) are of the 

Fermi type and it is seen that no set of the constants 
•q, T}', T)", r)'" can make them disappear. The terms (V) 
and (VI) depend besides on the matrix elements of the 
element in question also on its nuclear charge. This depend
ence is a consequence of the fact that the Hamiltonian

> 
also contains derivatives of the electron wave-function.

In the formula (48) appear a number of universal con
stants as well as the constants T|, rf, T|", t/". Møller22) 
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has recently pointed out that the theory may be brought 
into an especially symmetric form in which the universal 
constants hitherto arbitrary are connected by certain rela
tions. In this way, the number of constants will be de
creased. In section 5, the distribution formula will be dis
cussed under the assumption that the constants are fixed 
in this definite way. In the present section, the discussion 
is carried out for the case where no assumptions are made 
as to the relative magnitude of the universal constants 
involved. It will be seen, however, that we get the same 
types of energy distribution formulae as in the case dis
cussed in section 5.

In order to compare the different terms in (48) we 
notice that the constants and i/2 are determined from 
the binding energy of the deuteron and the range of nu
clear forces to be

 ± = (49) 
4-n-Ac 35 4irftc 15' v 7

They are of the same order of magnitude and so is, ac
cording to (6), also the constant /2. We have, furthermore, 
the relations (43) and (44) so that, for example, 

œ8 \Et | ßjZa œ co8 (E, B) Za
nu el

æ co8 (B, B)

for the light elements considered here. In comparing the 
different terms with the terms (II), (III) and (IV) we have, 
in general, to compare them with their second parts, since 
the quantities F, C, I) are smaller than A and B, respect
ively. But in the case when the corresponding constant q 
is equal to 1, only the first parts of (II), (III), and (IV) are 
different from 0, and it will thus be necessary to assume 
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that, in'these cases, one or more of the integrals (47) 
obtain, for allowed transitions, their respective maximum 
values.

As nothing is known about the relative magnitude of 
the constants flt glt f2, g2, it is convenient to distinguish 
two cases:

a) /\ does not exceed the order of magnitude of the con
stants /2 and i/2,

ß) /\ is much greater than f2 and g2.

An examination shows that, in the case (a), the terms 
(V), (X)-(XIII), (XV)-(XVII) and (XIX)-(XXVI) are 
small compared with the terms (I) —(IV) and (VI). The 
terms (VI), (XIV) and (XVIII) are also small, except in 
one case, viz. if

fiT}'" does not greatly exceed the order of f2 (50)

and, at the same time,

and
T] = T]" = 1

O' = 1 or j\»gv
(51)

Under the assumption (a) and excepting the above case, 
we obtain the following disintegration formula:

P(E) = fc-F(E) (52)

where k is a constant, E is the energy of the electron, F(E) 
is the Fermi function

F (F) = E J/f2 — 1 (IV- F)2

and Å is a constant which is seen to be of absolute value 
smaller than 1
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The formula (52) is just the same as that found hy Fierz13) 
in the most general Fermi theory.

In the case indicated by (50) and (51) and still under 
the assumption (a), we get, because of the supplementary 
terms (VI), (XIV), and (XVIII), the following formula:

Here, a, b, c and d are constants depending on the 
universal constants and certain matrix elements. The order 
of magnitude of the constants a and d cannot exceed that 
of c, which again is <1. Furthermore,

c>(), and I b | < 1.

If, on the contrary, /\ is so great that the relation (ß) 
holds, two cases are to be distinguished.

If
An'"» A (54)

we are again led to formula (52). If (54) is not true, we 
obtain a formula containing two further terms with the 
constants f and g:

P(E) = k" ■ F (E) [1 + aZ^ + fZ1'] +
(55)

The ß-spectrum described by this formula is of quite the 
same type as that given by (53).

The terms proportional to ~ and 

sign for positron emission but, since
E change their

the corresponding
1). Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVI1I.7. 3
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constant factors b and d can be of both signs, there is no 
asymmetry between the emission of electrons and that of 
positrons.

The ß-ray spectrum for 1 ’N (IV = 3,4) as given by formula 
(52) is shown in Fig. 1, where curve I represents the pure

Fermi distribution (Ä = 0), and the curves II and III 
correspond to the extreme values À = —1 and Ä = + 1, 
respectively. The curves are normalized in such a way as 
to have the same height at the maximum.

The supplementary terms appearing in the expressions 
(53) and (55), i. e.

G (E) = ’ F(E) (E2- I ) and H(E) = F(E) (56) 

are plotted in Fig. 2 together with a pure Fermi distri
bution, for reference.

Since it is impossible, at the present moment, to cal
culate the matrix elements involved and, consequently, to
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estimate the values of the constants a, b, nothing
definitive can be said about the shape of the distribution 
curves in the different cases considered here. The formula

either at higher or at lower energies than that for a 
Fermi curve.

Among the four light elements which lie at the upper 
boundary of the Sargent area,

6He, 17F, 15O, 13N, nC (57)

and which, therefore, may be considered as those with 
allowed transitions, 13N is the only element for which 
the ß-spectrum was measured with sufficient accuracy. 
Richardson9* and Lyman9* found a nuclear y-radiation of 
about 280 kV energy; their measurements of the relative 
intensity of this radiation differ, however, considerably 
from each other. Valley10*, on the other hand, could not 
find any radiation of this energy at all. As long as no 

3
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more exact measurements are available the question of 
the shape of the elementary components of which the ß- 
spectrum of 13N is built up still remains open.

The decay constant of the radioactive elements is given 
by the expression

À=jP(E)dE. (58)

Performing such an integration for the various terms 
involved, we get, putting

/<(£’) = i F(E),

Í* 1\ F(E)dE = - Wlog (W+|/W2-l) +
*'1 4

+ Å (2 ~ 9 W2 “ 8) |/^2 — 1

\G(E)dE = -34 Wlog ('W+|/W2-l) +

+ <8 ~38 w4+87 w2 + 48> /

\ H(E) dE = (6 W2 + 1) log ( W+ |/ IV2- Ï) +
t'i_ 24

+ (4 W5 + 52 W3— 161 W) |/ W2— 1
ouU

Cw 1
\ K(E)dE = --(4W2+l)log(w+|/lV2-rl) + 
•h «

+ ¿ (2 Ws + 13 W) |/W2 —1.

(59)

These expressions show that, for increasing W, the 
different integrals increase as the 5tli, 7th, 6lh, and 4th 



On the Theory of the ß-Decay. 37

power of W, respectively. Thus, if the formula (51) is 
valid, the decay constant is given mostly by the fifth power 
of W. In case the formulae (53) or (55) are valid, the life
time-energy connection depends essentially on the coeffi
cients which may vary from element to element. These 
two formulae would, thus, not be in contradiction with the 
measurements on 8Li which seem to indicate that, in this 
case, the decay constant is proportional to W5. On the 
other hand, the relatively short lifetime of such an element 
as 'Tie could possibly be explained by assuming that the 
coefficients multiplied with the functions G and H are 
greater for (’He than for other elements.

For the comparison of the lifetimes of radioactive elements 
with that of mesons it is important to notice the following 
fact. The decay constant of a free meson at rest described 
by the vector wave-function is, according to Yukawa, 
given by the expression*

Ànies
J? ff? 1 

471/1 13 he 3 fiel ' (60)

Besides the mesons given by the vector wave-function the 
present theory implies the existence of other mesons origin
ating from the pseudoscalar wave-function. Since the pro
bability for the disintegration of these mesons23) is propor- 

1 / - ~ inc\&tional, with nearly the same coefficient, to — I /\ + f-¿ — I 
it is seen that, in the case (ß), they will be much less 
stable than those described by a vector. The lifetime found

ni yf o
* In the present formulation, ----  and -— are equivalent to gf and

4tt 4ir
(g'Àp2, respectively, used in Yukawa’s paper, in analogy to the change 
of units in electrodynamics from Heaviside units to absolute units. 
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from an analysis of the cosmic radiation refers to the “vector”- 
mesons only, since the “pseudoscalar” ones disintegrate 
almost at once. For the lifetimes of radioactive elements, 
however, both kinds of mesons are of importance.

Finally, it should be emphasized that the variation of 
the atomic number for the elements (57) is so small that 
the influence of the coefficients and Z4/1 in the formulae 
(53) and (55) is far less important than that of the change 
of the matrix elements which determine the magnitude of 
the coefficients a, d, f and g.

5. Discussion of the disintegration formula with fixed 
universal constants.

Møller22) has shown that it is possible to unite both 
kinds of meson fields, i. e. the vector and the pseudo
scalar field into one consistent five-dimensional tensor 
scheme. This description leads to an interdependence be
tween the universal constants involved, namely

Zi = 7i
Á = “72

Ä = 71
~ di'

(61)

Is is, furthermore, necessary that the new scheme is in
variant with respect to rotations in the five-dimensional 
space. The quantities (10) are invariant to Lorentz trans
formations only, i. e. to a certain subgroup of the group of 
rotations just mentioned. In the general case, the quantities 
(10) will be transformed into each other and the require
ment of invariance leads to the relations
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(62)

dis-
con-

and f2 being determined by (49):

case (a) we get a simple Fermi distributionIn

(63)

case (ß) we have to retain in (48) the terms (I),

(64)

In the special case, only, where

r] = ri' = 1

A
A
7a-

We introduce the values (61) and (62) into the 
tribution formula (48) and get, thus, an expression 
taining the constants ft, f2, j\, f2, h and rf, only.

The discussion performed in the preceding section holds 
also for this special case. It will, however, be convenient 
to repeat the discussion in order to get more detailed 
informations about the coefficients appearing in the distribut
ion formula and to show that we really obtain all the 
expressions for the decay probability as in the most general 
case. We have to distinguish three cases as regards the 
relative magnitude of the constants fx and f2, the con
stants

In
(II), (III), (IV), (VII), (VIII) and (IX). We get, thus,

P(E) =

T| = T|" 

T]'= x\'"

(a) 7i<
(ß) 7i~
(y) 7i»

we have also to take the terms (VI), (XIV) and (XVIII) 
into consideration and we obtain the formula
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c2 K ft

Za.

It

d2 =

b2
a2

n = 1.

cannot exceed 1, that c2 and d2 areis seen that
of the same order of magnitude and that c2>0.

In case (y), finally, we get again the same expression 
(64) except if

In this case, we obtain the formula (65) with the same 
values for c2 and d2 and with

«2= +
+ fl fl [n2 (“i (F, F) + w2 (I). I») + ( 1 -T|)2 («2 («. Il) “2 (E, E>]

b¡ = — fifzfifíii} [«j (F, G) — coj (F, G) + «>2 (C, £>) — a>2 (C, B)] 

-fifia- i)2 [«2 (B. F) + ooj (B, E)].

The influence of the asymmetrical term containing — 

was shown in fig. 1. The other terms with (E2—1) and 
E2— 1 ... . ,——— do not change the distribution curve essentially. 

(66)

(67)
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Fig. 3 demonstrates the influence of these additional terms. 
Besides a pure Fermi distribution (F) with

b2 = c2 = d2 = 0

the expression (65) is plotted for the following sets of
constants:

Z;2 = 0 1
3

c2

«2
= 0.1 1

3
£-0

«2
(I)

/;2 = 0 1
3

£2

«2
= 0.1 1

3
d-i = 0.1
«2

(II)

/;2 = 0 1
3

£2 = 0.1 1
3 -2 = -0.1

a2
(III)

which seem to be reasonable values for these constants if
we assume that all the terms in a2 are of the same order 
of magnitude as are the expressions c2 and d2.

It is thus seen that the types of the distribution formula 
in the case considered in this section, where the constants 
are fixed in accordance to Møller’s considerations, are 
just the same as in the case where the constants are 
assumed to be independent of each other.
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However, attention should be drawn to the fact that, 
if we assume the relations (61) to be valid, the lifetime 
of the mesons described by the vector wave-function is 
essentially the same as that of mesons given by the pseudo
scalar wave-function so that an introduction of the pseudo
scalar meson field would not remove the difficulty pointed 
out by Nordheim (see p. 6).

Summary.
A theory of ß-disintegration, on the lines proposed by 

Yukawa, is developed in which the meson field is described 
by a four-vector and a pseudoscalar wave-function. In 
section 3, the general formula for the probability of ß-decay 
of light elements is derived. In the following sections, it is 
shown that—in spite of the necessity of introducing several 
new universal constants—the general formula can, for al
lowed transitions, be reduced to one of two simple types, 
only. This result follows regardless of whether the new 
universal constants are considered to be independent of 
each other (section 4) or they are fixed in a way proposed 
by Møller (section 5).

A comparison of the theoretical distribution with the 
results of the experiments is difficult at the present time 
because the measurements on the ß-spectra for allowed 
transitions and light elements are, except for 13N, not 
sufficiently accurate for this purpose. Furthermore, the 
shape of the ß-curve will be essentially changed if the 
nucleus formed after the ß-process can be left in an excited 
state. Only in cases where the emitted y-radiation is in
vestigated, it becomes possible to build up the spectrum 
from its elementary components. The only element the 
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ß-spectrum of which is measured with sufficient accuracy 
is 13N, the results of the measurements on the y-radiation 
emitted are, however, very divergent.

As regards the lifetime-energy connection, neither of the 
two types of disintegration probability is in disagreement 
with the experiments.
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for the hospitality extended to him at the Institute of Theo
retical Physics at Copenhagen. Cordial thanks are, further
more, due Dr. C. Moller and Professor L. Rosenfeld, 
who have suggested the present problem, for numerous 
stimulating discussions. The author is very much indebted 
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